

Warm air heaters / HT2000 ULTRA heater range High efficency condensing unit heaters

Low NO_x

ECA, CE & Building Regulations Compliant

Sealed combustion circuit

Stainless steel heat exchanger option

Automatic operation

Space saving off floor installation

Optimised control

"Taylor" made solutions from the company with the know - how

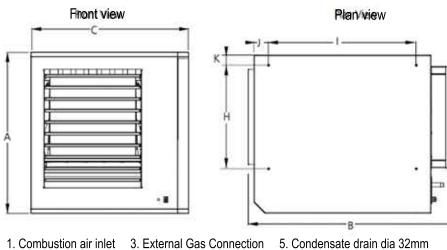
Features & Benefits

- Thermal efficiency of 100% at full load and up to 109% at minimum load lower operational costs
- Substantially reduced CO and NOx emissions (under 20 ppm) considerably lower than the emissions of the previous generation of unit heaters, and already exceeding European standards
- Reduced energy bills
- Ideal for new low carbon buildings
- Up to 30% energy saving on replacement heaters
- Burner with new "pull through" combustion techno logy. Negative pressure ensures that no gas or flue gas can escape into the heated space
- Versatile flue options (top or rear connections) for ease of installation

- High flow axial fan for a powerful air throw, decreases stratification and improves heat distribution
- 5:1 turn down ratio for close tempera control. Reduced temperature gradients help prevent stratification

Visit us online: www.harrytaylor.co.uk

Warm air heaters / HT2000 ULTRA heater range High efficiency condensing unit heaters


ULTRA Technical Data										
			ULTRA 90	ULTRA 115	ULTRA 170	ULTRA 250	ULTRA 330			
Nominal heat output		kW	25.0	32.7	49.7	69.6	94.4			
Maximum thermal efficiency at minimum heat input (net)		%	109.2	108.8	108.7	106.5	108.9			
Airflow		m ³ /h	2900	3700	5600	7900	10500			
Temperature rise		С	25.3	25.7	25.9	25.7	26.2			
Throw1		m	20	23	30	30	36			
Noise level @ 5m		dB(A)	47	51	55	53	58			
Gas Consumption ²	Natural gas G20	m ³ /h	2.59	3.39	5.07	7.27	9.76			
	Propane G31	kg/h	1.99	2.60	3.93	5.51	7.47			
Gas connection 3		Rc	1/2"	1/2"	3/4"	3/4"	3/4"			
Mounting height ⁴		m	3	3.5	3.5	4	4			
Total electrical load		kW	0.29	0.32	0.69	0.75	1.25			
Net weight		kg	112	129	141	197	243			

- 1. Throw is dependent on mounting height, building height, room temperature and louvre settings. Throw distance relates to terminal velocity of 0.5m/s.
- 2. Natural gas G20 calorific value 10.48kWh/m3 GCV, inlet gas pressure maximum 50mbar, minimum 17.5mbar. Propane G31 calorific value 14.0 kWh/kg GCV, inlet gas pressure maximum 50mbar, minimum 37mbar.
- 3. Not supply line size.
- 4. Recommended height to underside of heaterfor standard horizontal discharge units. Downturn nozzles are recommended for units installed at higher mounting heights. For buildings over 4 metres high, air re-circulation fans are recommended in conjunction with the heaters.
- 5. Sound pressure level measured @5m from the unit with A=160M² and Q=2.

ULTRA Dimensions											
	Model										
	ULTRA 90	ULTRA 115	ULTRA 170	ULTRA 250	ULTRA 330						
Unit height	А	885	885	885	885	885					
Unit length	В	1207	1207	1214	1214	1214					
Unit width	С	738	738	865	1177	1433					
Base to gas inlet	D	222	222	222	222	222					
Top to air inlet	Е	231	231	231	203	203					
Top to flue outlet	F	351	351	351	343	343					
Side to air inlet and flue outlet	G	135	135	140	143	143					
Flue and combustion air collars	Ø mm	80	80	80	100	100					
Suspension centres	Н	449	449	576	860	1144					
		760	760	760	760	760					
	J	105	105	105	105	105					
	K	55	55	50	78	50					
Top clearance		105	100	100	100	100					
Rear clearance		400	400	400	500	500					
Bottom clearance *		100	100	100	100	100					
Side clearance		100	100	100	100	100					
Service panel clearance		820	820	820	820	820					

^{*}Heaters may be base mounted directly onto non-combustible supports adequately sized to support the unit weight

Warm air heaters / HT2000 ULTRA heater range High efficiency condensing unit heaters

- 2. Flue connection
- Electrical connections
- 5. Condensate drain dia 32mm female

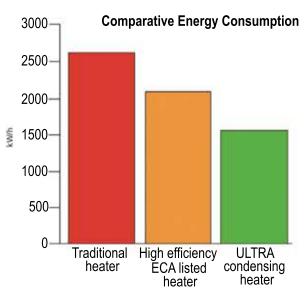
Rear view

Advanced Heat Exchanger **Technology**

As the flue gases pass through the secondary heat exchanger, the extra surface area cools the flue gases below 45°C causing the water vapour to condense and release its latent heat.

This heat, which would normally be lost to the atmosphere via the flue, is instead transferred into the building hence less fuel is used to achieve the same heat output.

These units are permanently condensing, with constant low flue gas temperatures.


This results in far lower energy consumption and carbon emissions compared to other types of condensing units which only achieve comparable efficiency levels at reduced heat outputs.

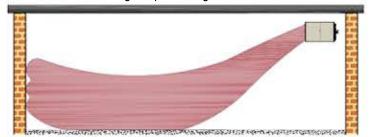
Optimum Economy and Fuel Savings

In times of rapidly increasing energy costs, reducing energy consumption makes sense both financially and environmentally since this also significantly reduces CO2 emissions.

Although condensing air heaters require a higher initial capital investment they are very economical and can repay the extra initial cost in fuel savings in 2-4 years depending on usage.

When replacing traditional units more than 10 years old, savings of 30% can be achieved.

Traditional unit heater


Higher roof space temperatures increase heat loss through roof

Shorter air throws reduce air distribution efficiency and require longer pre-heat times

ULTRA heater

Reduced floor to ceiling temperature gradients

Longer air throws provide even heat distribution and reduce pre-heat times

Harry Taylor Southern office:

Kitsons works, Aylesbury Road, Bromley, Kent, BR2 OQZ, UK

Southern office tel: 020 8464 0915 southernoffice@harrytaylor.co.uk

Harry Taylor Northern office:

Guide Bridge Mill, South street, Bromley, Kent, BR2 OQZ, UK

Northern office: 0161 308 4550 northernoffice@harrytaylor.co.uk

